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The nonperturbative large-N expansion applied to the generalized Hubbard model de-
scribing N-fold-degenerate correlated bands is considered. Our previous results, ob-
tained in the framework of the Lagrangian formalism for the normal-state case, are ex-
tended to the superconducting state. The standard Feynman diagrammatics is obtained
and the renormalized physical quantities are computed and analyzed. Our purpose is to
obtain the 1/N corrections to the renormalized boson and fermion propagators when a
state with Cooper-pair condensation (i.e., the superconducting state) is considered.
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1. INTRODUCTION

Many problems concerning the superconductivity of strongly correlated sys-
tems were treated within the context of the generalized Hubbard model by using
the decoupled slave-boson representation (Grill and Kotliar, 1990; Kotliar and Liu,
1988; Tandonet al., 1999). In Grill and Kotliar (1990), Kotliar and Liu (1988), and
Tandonet al.(1999) the generalized Hubbard model describingN-fold-degenerate
correlated bands in the infinite-U limit by means of the large-N expansion was
studied. Using the slave-boson technique, Fermi-liquid properties of strongly cor-
related systems were evaluated. Moreover, it was shown that the leading 1/N
corrections gives rise to different superconducting instabilities depending on the
band structure and the filling factor.

Since the Hubbard operator representation is quite natural to treat the elec-
tronic correlation effects (Colemanet al., 2001; Izyumov, 1997), we have devel-
oped a Lagrangian formalism in which the field variables are directly the Hubbard
X-operators (Foussatset al., 1999, 2000, 2002). In this approach the Hubbard
X̂-operators representing the real physical excitations are treated as indivisible
objects and any decoupling scheme is used.
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By using the path-integral technique, the correlation generating functional
corresponding to the Lagrangian formalism was written in terms of a suitable
effective Lagrangian.

Later on, in Foussatset al.(2002) the quantization of the t-J model in terms of
the HubbardX-operators for the normal state was given. In particular in Sections II
and III of Foussatset al.(2002) the nonperturbative formalism for the generalized
Hubbard model was analyzed. This was done by means of a new large-N expansion
in the infinite-U limit carried out on our Lagrangian formalism for the t-J model.
The parameterN represent the number of the electronic degrees of freedom per
site and 1/N can be considered as a small parameter.

In this context, by defining proper propagators and vertices the standard
Feynman diagrammtics of the model is given, and the bosonic and the fermionic
self-energies can be renormalized. From these renormalized quantities several
physical properties can be evaluated and the results were confronted with others
previously obtained.

The free boson propagator which is of order 1/N is renormalized by series
of fermionic bubbles whose contributions are also of order 1/N.

Recently, our generalized Lagrangian model was checked by explicit compu-
tation of charge–charge and spin–spin correlation functions (Foussats and Greco,
2002). The agreement with previous results is excelent and gives a strong prove on
the correcteness of our Lagrangian approach as well as of the large-N expansion.

Analogously, the fermionic self-energy up to order can be computed. Later on,
from the Dyson equation the renormalized fermionic propagator can be evaluated
at order 1/N by solving the correspondent equations self-consistently.

The self-consistent method of solution for the equations involving the dressed
fermion propagator, is the usual like in the Hamiltonian formalim for the decoupled
slave-bonon representation (Grilli and Kotliar, 1990; Kotliar and Liu, 1988; Tandon
et al., 1999).

Our model is useful to describe the normal state, i.e. the state in which the
Cooper-pair amplitude〈ck↑ck↓〉 is zero because of number conservation.

The key feature of the frequently used Bardeen–Cooper–Schriefer (BCS)
theory is the Cooper-pair condensation. The simplest model that permits the de-
scription of the superconducting state is given by the BCS reduced Hamiltonian for-
malism. The BCS integral equation is introduced by means of Gor’kov’s method.
Next the superconducting state is incorporated into the formalism by using the
Nambu matrix notation (Allen and Mitrovic, 1982; Nambu, 1960).

The purpose of the present paper is to make possible the description of
the superconducting state in the framework of our formalism when the pair of
states (k ↑,−k ↓) is occupied coherently. This is done by introducing the Nambu
matrix notation in the new nonperturbative large-N expansion for the gener-
alized Hubbard model proposed in Foussatset al. (2002). The aim is to give
the formulas for the renormalized physical quantities, such as self-energies and



P1: FYJ

International Journal of Theoretical Physics [ijtp] pp984-ijtp-472811 October 22, 2003 9:56 Style file version May 30th, 2002

Superconducting State in the Lagrangian Formalism of the Generalized Hubbard Model 2105

propagators, to leading order in 1/N for the superconducting state with Cooper-
pair condensation.

The paper is organized as follow. In section 2, the main results of sections II
and III of Foussatset al. (2002) are collected, and the Nambu notation is intro-
duced. In sections 3 and 4, by using the Nambu matrix notation the Feynman
diagrammatics is analyzed up to one loop with the aim to compute the 1/N cor-
rection to the renormalized boson propagator. The resulting expression permits us
to evaluate the 1/N correction to the total fermion self-energy for both the normal
and the superconducting states.

2. DEFINITIONS AND NAMBU NOTATION

In the slave-boson representation for the generalized Hubbard model describ-
ing N-fold-degenerate correlated bands (Grilli and Kotliar, 1990; Kotliar and Liu,
1988; Tandonet al., 1999), the nonperturbative large-N expansion technique is
used systematically. Also the large-N expansion was used in functional theories
written in terms of theX-operators (Zeyher and Greco, 1988; Zeyher and Kulic,
1996), and was shown that in order 1/N the method gives different results for
superconductivity.

In Foussatset al.(2002), by using our Lagrangian model written in the frame-
work of the path-integral formalism a new nonperturbative largeN-expansion was
proposed. The generalized Hubbard model is described by means of the introduc-
tion of a set of fermion fieldfip, in such a way that their proportionality with
the fermion-like HubbardX0p

i -operators is maintained for all order in the large-N
expansion. Looking at the Lagrangian equation (2.17) of Foussatset al. (2002),
we see that it is sufficient to retain terms up to orderδR2

i to take into account all
the terms of order 1/N. Therefore the Lagrangian is written

L E
ef f = −

1

2

N∑
i , p

(
ḟ i p f +i p + ḟ +i p fip

)(
1− δRi + δ2

i

)+ r0

N∑
i , j , p

ti j f +i p fip

− (µ′ − λ0)
∑
i , p

f +i p fip(1− δRi + δR2
i )

+ Nr0

∑
i

δλi δRi +
∑
i , p

f +i p fip
(
1− δRi + δR2

i

)
δλi

+ 1

2N

∑
i , j , p, p′

Ji j [1− (δRi + δRj )]
[

f +i p fip′ f
+
j p′ f jp + f +i p fip f jp′ f

+
j p′
]
.

(2.1)

As it was shown in Foussatset al. (2002) our Lagrangian formalism for
the t-J model is a secondclass constrained system. The physical quantities such
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as propagators and vertices were renormalized by means of the introduction of
proper ghost fields. Therefore, in the present paper we assume that all the physical
quantities we must handle were previously renormalized.

Now the construction of the diagrammatics starting from the Lagrangian (2.1)
in the infinite-U limit ( Ji j = 0) is straightforward.

When the superconducting state is considered, the renormalized fermion prop-
agatorĜ(D) is a 2× 2 matrix schematically written

Ĝ(D) =
(⇒⇒ ⇐⇒
⇒⇐ ⇐⇐

)
, (2.2)

where the diagonal elements with the two arrows pointing in the same direction are
the normal fermionic propagators, while the nondiagonal elements with the two
arrows pointing in the opposite direction are the anomalous fermionic propagators.

To describe the fermionic sector when the complete fermionic propagator is of
the form (2.2), the simplest way is to introduce the Nambu matrix notation (Nambu,
1960). In this notation the two-component fermionic field operatorΨim(x, τ ) is
given by

9im(x, τ ) =
(

fim↑(x, τ )

f +im↓(x, τ )

)
. (2.3)

The Lagrangian (2.1) in terms of the field operator9im(x, τ ) is written

L E
ef f = −

1

2

∑
i

N/2∑
m=1

[9̇†im Î9im −9†im Î9̇im]
(
1− δRi + δR2

i

)
+
∑
i , j

N/2∑
m=1

(r0ti j − µδi j )9
†
imτ̂39 jm

(
1− δRi + δ2

i

)
+ Nr0

∑
i

δλi δRi +
∑

i

N/2∑
m=1

9
†
imτ̂39 jm

(
1− δRi + δR2

i

)
δλi , (2.4)

where we have namedµ = µ′ − λ0.
From the Eq. (2.4) we can see that the bosonic sector described by the two

field components (δRi , δλi ) remains unchanged, and the fermionic sector was
written by using the 2× 2 Pauli matriceŝI and τ̂3. So, to describe nondiagonal
quantities appearing in the fermionic propagator when the superconducting state
is considered, the four Pauli matrices are introduced

Î =
(

1 0

0 1

)
, (2.5a)

τ̂1 =
(

0 1

1 0

)
, (2.5b)
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τ̂2 =
(

0 −i

i 0

)
, (2.5c)

τ̂3 =
(

1 0

0 −1

)
. (2.5d)

The two-component fermionic field operator (2.3) in the momentum space
reads

9km =
(

fkm↑
f +−km↓

)
(2.6a)

and

9
†
km =

(
f +km↑ f−km↓

)
. (2.6b)

By using the above notation, in the next section we study the diagrammatics
for both normal and superconducting states with the purpose to find the equation
for the total fermion self-energy and hence to write the renormalized fermion
propagator to leading order of large-N expansion.

3. DIAGRAMMATICS IN THE NAMBU NOTATION

The Feynman rules and diagrammatics can be obtained as is usual, and in
order to compute the 1/N corrections to the propagators the structure of the model
is examined up to one loop.

We assume the equations written in momentum space, and so once the Fourier
transformation was performed, the bilinear parts of the Lagrangian (2.4) give rise
to the field propagators and the remaining pieces are represented by vertices.

Moreover, as mentioned above the boson sector remains unchanged. The free
boson propagator associated with the two component boson fieldδXa = (δR, δλ),
is of order 1/N and is written

D(0)ab(q, ωn) =
(

0 1
Nr0

1
Nr0

0

)
, (3.1)

where the quantitiesq andωn are respectively the momentum and the Matsubara
frequency of the bosonic field.

The free propagator (3.1) is dressed by using the Dyson equation (Dab)−1 =
(D(0)ab)−1−∏(Ren)

ab . The boson self-energy and the dressed components
DRR(q, ωn), DλR(q, ωn), andDλλ(q, ωn) of the matricial boson propagator were
found in Foussatset al. (2002), Eqs. (4.4) and (4.5), respectively.

The renormalized boson propagator we found is the suitable one that permits
us to evaluate for instance the 1/N correction to the fermion self-energy.
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Finally we remark that when only the normal state is considered, our diagram-
matics was checked by computing numerically the charge–charge and spin–spin
correlation functions on the square lattice for nearest-neighbor hopping t (Foussats
and Greco, 2002). The results are in agreement with previous ones arising from the
slave-boson model as well as from the functionalX-operators canonical approach
(Gehlhoff and Zeyher, 1965; Wang, 1992).

Now we briefly analyze the fermionic sector of the Lagrangian (2.4) for the
normal state.

The bilinear fermionic part of the Lagrangian (2.4) in the momentum space
reads

L F (9†km,9km) = −1

2

∑
k

N/2∑
m=1

9
†
km(Ĝ(0))

−19km, (3.2)

where the 2× 2 matrix (Ĝ(0))−1 is given by

(Ĝ(0))
−1 = −[i νn Î − (εk − µ)τ̂3] = −[i νn Î −1kτ̂3] (3.3)

and whose determinant writes

det(Ĝ(0))
−1 = −[(i νn)2− (1k)2] = ν2

n +12
k, (3.4)

where was definedεk = −r0t
∑

I exp(−i I · k); and I is the lattice vector. The
quantitiesk andνn are respectively the momentum and the Matsubara frequency
of the fermionic field.

Therefore, the free fermion propagatorĜ(0) is

Ĝ(0)(k, i νn) = −
( 1

i νn−1k
0

0 1
i νn+1k

)
, (3.5)

where we call1k = (εk − µ), having the property1k = 1−k. From this property
it can be seen that

G(0)22(k, i νn) = −G(0)11(−k,−i νn). (3.6)

For noninteracting band electrons, the off-diagonal elements in (2.2) vanish,
and the elementG(0)11 has the usual scalar form−(i νn −1k)−1 (see Foussats
et al., 2002).

The matrix equation (3.5) in terms of the Pauli matrices can be written

Ĝ(0)(k, i νn) = −(i νn Î −1kτ̂3)−1 = − (i νn Î +1kτ̂3)

(i νn)2−12
k

= 1

det(Ĝ(0))−1
(i νn Î +1kτ̂3). (3.7)
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Looking at the Eq. (2.4) it can be seen that three-leg (one boson and two
fermions) and four-leg (two bosons and two fermions) vertices, are respectively
originated by the following pieces of that Lagrangian

L B,2F (δXa,9†im,9im) = 1

2

∑
i

N/2∑
m=1

[9̇†im Î9im −9†im Î9̇im] δR

+ µ
∑

i

N/2∑
m=1

9
†
imτ̂39 jm δR

+
∑

i

N/2∑
m=1

9
†
imτ̂39 jm δλ, (3.8)

L2B,2F (δXa, δXb,9†im,9im) = −1

2

∑
i

N/2∑
m=1

[9̇†im Î9im −9†im Î9̇im] δR2

−µ
∑

i

N/2∑
m=1

9
†
imτ̂39 jm δR2

−
∑

i

N/2∑
m=1

9
†
imτ̂39 jm δRδλ. (3.9)

Therefore, the vertices can be written

3mm′
a = (−1)

[
i

2
(νn + ν ′n)Î + µτ̂3, τ̂3

]
δmm′ , (3.10)

3mm′
ab =

1

2

(
i (νn + ν ′n)Î + µτ̂3 τ̂3

τ̂3 0

)
δmm′ . (3.11)

From the above Feynman diagrammatics the expression for the 1/N correc-
tion to the fermion self-energy for the normal and the superconducting states can
be written.

4. THE 1/N CORRECTION TO THE FERMION SELF-ENERGY
FOR THE NORMAL AND THE SUPERCONDUCTING STATES

As it was commented in the Introduction the simplest model suitable to de-
scribe the superconducting state is given by the BCS reduced Hamiltonian for-
malism. In the normal state such formalism reduces to Migdal’s theory whose
essence is to use only the lowest order Feynman diagram provided by the reduced
Hamiltonian (Bardeenet al., 1957).
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In our model the total fermion self-energy
∑

for the normal state is given by
the sum of contributions corresponding to the following two one-loop diagrams

6̂ = 6̂(1)+ 6̂(2) (4.1)

In the Nambu matrix notation the matrices6̂(1) and6̂(2) respectively are written

6̂(1)(k, i νn) = 1

Ns

∑
m,m′,q,ωn

3mm′
a Dab

(V)(q, ωn)3m′m
b Ĝ(0)(νn + ωn, k+ q)

= 1

Ns

∑
q,ωn

{[
−1

4
(2νn + ωn)2+ η2 Î + i (2νn + ωn)µτ̂3

]
DRR

(V) (q, ωn)

+ 2

[
i

2
(2νn + ωn)τ̂3+ µÎ

]
DRλ

(V)(q, ωn)

+ Î Dλλ
(V)(q, ωn)

}
Ĝ(0)(νn + ωn, k+ q), (4.2)

6̂(2)(k, i νn) =
∑

m,m′,q,ωn

3mm′
ab Dab

(V)(q, ωn)

=
∑
q,ωn

1

2
[i (2νn + ωn)Î + µτ̂3]DRR

(V) (q, ωn)+ τ̂3

∑
q,ωn

DRλ
(V)(q, ωn).

(4.3)

From the above equations the 1/N correction to the fermion self-energy can
be computed (see, for instance, (Kotlian and Liu, 1988)).

Alternatively the matriceŝ6(1) and6̂(2) can be written

6̂(1)(k, i νn) =
(

A1+ B1 0
0 A1− B1

)
Ĝ(0)(νn + ωn, k+ q), (4.4)

6̂(2)(k, i νn) =
(

A2+ B2 0
0 A2− B2

)
, (4.5)

where

A1 =
∑
q,ω

[(
−1

4
(2νn + ωn)2+ µ2

)
DRR

(V) (q, ωn)

+µDRλ
(V)(q, ωn)+ Dλλ

(V)(q, ωn)

]
, (4.6a)
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B1 = µ
∑
q,ω

i (2νn + ωn)
[
DRR

(V) (q, ωn)+ DRλ
(V)(q, ωn)

]
, (4.6b)

A2 =
∑
q,ω

i

2
(2νn + ωn)DRR

(V) (q, ωn), (4.6c)

B2 =
∑
q,ω

1

2
µDRR

(V) (q, ωn)+ DRλ
(V)(q, ωn). (4.6d)

Therefore, for the normal state the total fermion self-energy is a diagonal
matrix which in terms of the Pauli matrices can be explicitly written as follows:

6̂(k, i νn) = −i νn[1− Z(k, i νn)] Î + χ (k, i νn)τ̂3. (4.7)

The fermionic dressed propagator is defined by means of the Dyson equation
(Ĝ(D))−1(k, i νn) = (Ĝ(0))−1(k, i νn)− 6̂(k, i νn).

The above equations are suitable to describe the leading 1/N corrections for
the normal state in the generalized Hubbard model describingN-fold-degenerate
correlated bands in the infinite-U limit. They were obtained by means of a new
nonperturbative large-N expansion in the framework of our Lagrangian model.

Now the superconducting state must be incorporated. By looking at the ex-
pression of the fermionic self-energy (Eq. (4.7)) we assume that the most general
form to write the total self-energy in terms of the Pauli matrices is

6̂(k, i νn) = −i νn[1− Z(k, i νn)] Î + χ (k, i νn)τ̂3+ φ(k, i νn)τ̂1+ φ̄(k, i νn)τ̂2,

(4.8)

whereZ, χ , φ, andφ̄ are four independent arbitrary functions.
When the superconducting state is taken into account the “anomalous” dressed

fermionic propagator also is determined by the Dyson equation, consequently(
Ĝ(D)

)−1
(k, i νn) = −i νnZ Î − (χ −1k)τ̂3− φ(k, i νn)τ̂1− φ̄(k, i νn)τ̂2. (4.9)

This matrix can be inverted, and it results

Ĝ(D)(k, i νn) = 1

det
(
Ĝ(D)

)−1 [−i νnZ Î + (χ −1k)τ̂3− φ(k, i νn)τ̂1

+ φ̄(k, i νn)τ̂2], (4.10)

where

det
(
Ĝ

(D
))−1(k, i νn) = (i νnZ)2− (χ −1k)2− φ2− φ̄2. (4.11)

It is clear that the Dyson perturbation series for the matrixĜ(D) turns out to
be identical to that forG(D). The only difference is that̂G(D) is a matrix and that
factors of the Pauli matrices are attached in the interaction matrix elements.
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Since in the normal state the fermionic propagatorĜ(D) is diagonal, it is clear
that the both arbitrary functionsφ andφ̄ must vanish. The arbitrary functionsZ
andχ are univocally determined by the normal state, and in order to verify the
property (3.6) both quantities must be even functions ofi νn. The “normal” solution
φ = φ̄ = 0 always exists. So, the functionsZ andχ in the normal state remain
defined by the following equations

i νn[1− Z(k, i νn)] = 1

2

[
6(k, i νn)−6(k,−νn)

]
, (4.12)

χ (k, i νn) = 1

2

[
6(k, i νn)+6(k,−i νn)

]
, (4.13)

where it was assumed that everything is even in the momentumk.
Moreover, it is assumed that the property (3.6) is mantained in the super-

conducting state, and so is necessary thatφ2+ φ̄2 must be also an even function
in i νn. Also, it is possible to see thatφ and φ̄ satisfy identical nonlinear equa-
tions. Consequently, except a proporcionality factor (phase factor) both functions
must be equals. When a solution (φ, φ̄) with one or both functions different from
zero exists, it is possible to show that it describes the state with Cooper-pair con-
densation (the superconducting state) (Bardeen and Stephen, 1964). The simplest
solution is to takeφ 6= 0 andφ̄ = 0 corresponding to fix the phase factor. This is
possible because the physical observables cannot depend of this phase. This choice
is equivalent to write the self-energy in terms of the real Pauli matrices.

Finally, as it occurs in the normal-state case, the equation for the total
fermionic self-energy must be solved self-consistently by using the Eq. (4.10).
As it is usual the explicit computation is carried out by introducing the spectral
representation of the boson propagator.

5. CONCLUSIONS

As commented above nowadays the BCS theory is the remarkably model
capable to describe the superconducting state. The main feature of BCS theory
is the Cooper-pair condensation, in this approach the pair of states (k ↑,−k ↓)
is occupied coherently. The Cooper-pair amplitude〈Ck↑ c−k↓〉 which is zero in
the normal-state due to the number conservation becomes finite bellowTc. The
simplest model which permits such behavior is the BCS reduced Hamiltonian
model.

Recently, a Lagrangian family that can be mapped in the slave-boson rep-
resentation was studied (Foussatset al., 2002). In the case of the normal-state
the nonperturbative formalism for the generalized Hubbard model by using a new
large-N expansion in the infinite-U limit was given. The standard Feynman dia-
grammatics was constructed, in order to compute the 1/N correction to the boson
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propagator. The structure of the model was examined in detail up to one loop.
The renormalized boson propagator we found is the suitable one that permits us to
evaluate the 1/N correction to the fermion self-energy. In the normal-state case,
the diagrammatics was checked by computing numerically the charge–charge and
spin–spin correlation functions on the square lattice for nearest-neighbor hopping
t (Foussats and Greco, 2002). The results obtained in Foussats and Greco (2002)
are in agreement with previous one arising from the slave-boson model as well as
from the functionalX-operators canonical approach.

In this paper, by using the Nambu matrix notation we have rewritten the
Lagrangian for the t-J model and the Feynman diagrammatics was constructed but
now taking into account the superconducting state. In this situation propagators
and vertices were again evaluated. The renormalized physical quantities to leading
order in 1/N were computed, and the equation for the total fermion self-energy
which must be solved self-consistently was found. So, we have given the theoret-
ical framework suitable to describe the superconducting state in the Lagrangian
formalism for the generalized Hubbard model. In a future work our equations will
be checked by computing the relevant physical quantities. Also the more general
case withji j 6= 0 which incorporate the four-leg fermion vertex will be studied.
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